• Request Info
  • Visit
  • Apply
  • Give
  • Request Info
  • Visit
  • Apply
  • Give

Search

  • A-Z Index
  • Map

Ecology & Evolutionary Biology

  • About
    • Give to EEB
    • Alumni
  • People
    • Faculty
    • Emeritus
    • Graduate Students
    • Adjunct
    • Postdocs
    • Research Staff
    • Administrative Staff
  • Undergraduate Students
    • EEB Concentration in Biology
    • EEB Minor
    • Honors
    • Course Descriptions
    • Naturalists Club
    • Fellowships
    • Be successful in EEB
  • Graduate Students
    • Graduate Student Handbook
    • FAQs
    • Applying to Grad School
    • GREBE
    • Funding
  • Research and Outreach
    • Research Highlights
    • Undergraduate Research Opportunities
    • Outreach Events
  • Collections and Facilities
    • UT Herbarium
    • UT Etnier Ichthyology Collection
    • Hesler Biology Greenhouses
    • Natural History Collections Course
    • Fellowships and Awards
    • Biology Field Station
  • News & Seminars
    • Current Seminars
    • News
    • Newsletter
Home » Ants as Seed Dispersers

Ants as Seed Dispersers

November 16, 2018 by wpeeb

Chloe LashAlthough it is likely most people have experienced ants at a picnic, they may not realize ants are important seed dispersers, a mutualism referred to by ecologists as myrmecochory. Seed dispersal by ants exists worldwide, but the eastern deciduous forests are a hotspot for this ant-plant interaction. Approximately 35 percent of the herbaceous plants in the understory of forests in eastern North America rely on ants for seed dispersal. Plant species that have coevolved myrmecochory have an oil-rich appendage, known as an elaiosome. The elaiosome attracts the ants with chemical cues. Ants pick up the seed by the elaiosome and return with it to their nest where they feed the elaiosome to their brood. The seed either remains in the nest or is taken outside of the nest. Thus, in myrmecochory, ants gain food, and seeds receive dispersal away from their parent plant, protection from seed predators, and a nutrient-rich germination site in or around ant nests.

Additional organisms likely play a role in this interaction. Microbes, such as bacteria and fungi, are abundant in soil and decaying wood environments where ants nest and seeds germinate. Some of these microbes are harmful to plants or ants, so ants and plants have defenses against these pathogens. Each partner in the ant seed dispersal mutualism has the potential to affect the other partner’s microbes. Chloe Lash, a graduate student in the Kwit Lab, is investigating the effects of chemicals and microbes in this mutualism for her dissertation.

Chloe uses advanced chemical identification techniques to investigate plant and ant chemicals and their potential antimicrobial properties. A combination of traditional and next generation sequencing techniques allows Chloe to understand the microbial loads that both ants and seeds encounter and how those microbial communities change when the partners interact with each other. This novel incorporation of chemical and microbial facets into myrmecochory will contribute to understanding the evolution and persistence of the myrmecochory mutualisms and can help scientists predict the consequences of global change-related disruptions.

ant larvae

Filed Under: graduate, newsletter

Ecology & Evolutionary Biology

College of Arts and Sciences

569 Dabney Hall
Knoxville TN 37996-1610

Email: eeb@utk.edu

Phone: 865-974-3065

The University of Tennessee, Knoxville
Knoxville, Tennessee 37996
865-974-1000

The flagship campus of the University of Tennessee System and partner in the Tennessee Transfer Pathway.

ADA Privacy Safety Title IX