2 More NSF Fellowships for EEB
The 2015 NSF Graduate Research Fellowships have been announced; Jordan Bush (Simberloff Lab) and Todd Pierson (Fitzpatrick Lab) each received one. Congratulations!
by armsworth
The 2015 NSF Graduate Research Fellowships have been announced; Jordan Bush (Simberloff Lab) and Todd Pierson (Fitzpatrick Lab) each received one. Congratulations!
by armsworth
Graduate student Cassie Dresser (Fitzpatrick Lab) has just found out that her work on Bog Turtle conservation in collaboration with the Knoxville Zoo was funded by a $21,000 grant from the Association of Zoos and Aquariums. Congratulations!
by artsciweb
Congratulations to Zach Marion & Ben Fitzpatrick. They just found out that Zach’s NSF Dissertation Improvement Grant will be funded (details below)!
Dissertation Research: Evolutionary complexity and diversity of chemical defenses in diurnal and nocturnal fireflies
Predation is a powerful force driving prey evolution. Recent studies have highlighted that defenses against predators are rarely simple but are instead multivariate, with individual components that are better suited for some predators than others, or that are differentially expressed at different stages of ontogeny. Closely related populations or species may employ qualitatively and quantitatively different defense strategies because of chance or from past or ongoing selection. Thus, two key questions are (i) what factors favor particular defensive strategies and (ii) how are these strategies integrated into the phenotype? Chemically mediated defenses in fireflies provide an excellent system in which to evaluate these questions. Although primarily known for their bioluminescent mate signaling, most fireflies produce an impressive array of cardiac steroids that vary qualitatively (e.g., chemical structure) and quantitatively (e.g., concentrations) within and among populations and species. Yet, little is known about firefly chemical diversity, and how it—and integrated defensive phenotypes in general—evolve. Here we consider whether shifts between diurnal and nocturnal activity (and associated loses or gains of bioluminescence) are accompanied by changes in the mode and tempo of evolution of chemical defenses. We propose to quantify the complexity and diversity of chemical defense compounds in several species, and use a phylogenetic comparative framework to estimate rates of change and patterns of convergence and divergence of chemical phenotypes.
by artsciweb
The UT-ORNL Science Alliance gives awards to outstanding graduate students. This year, half the awards to biologists across three UT biology departments went to EEB graduate students: Emily Austin, Matt Niemiller, and Graham Reynolds.
by artsciweb
EEB grad students Matt Niemiller and R. Graham Reynolds are editors of the new book Amphibians of Tennessee.